Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 625(7994): 329-337, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200294

RESUMO

Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1-4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5-7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.


Assuntos
Genoma Humano , Genômica , Migração Humana , Populações Escandinavas e Nórdicas , Humanos , Dinamarca/etnologia , Emigrantes e Imigrantes/história , Genótipo , Populações Escandinavas e Nórdicas/genética , Populações Escandinavas e Nórdicas/história , Migração Humana/história , Genoma Humano/genética , História Antiga , Pólen , Dieta/história , Caça/história , Fazendeiros/história , Cultura , Fenótipo , Conjuntos de Dados como Assunto
2.
Nature ; 625(7994): 301-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200295

RESUMO

Western Eurasia witnessed several large-scale human migrations during the Holocene1-5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.


Assuntos
Genética Populacional , Genoma Humano , Migração Humana , Metagenômica , Humanos , Agricultura/história , Ásia Ocidental , Mar Negro , Diploide , Europa (Continente)/etnologia , Genótipo , História Antiga , Migração Humana/história , Caça/história , Camada de Gelo
3.
Curr Biol ; 27(14): 2185-2193.e6, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28712569

RESUMO

The transition from hunting and gathering to farming in Europe was brought upon by arrival of new people carrying novel material culture and genetic ancestry. The exact nature and scale of the transition-both material and genetic-varied in different parts of Europe [1-7]. Farming-based economies appear relatively late in Northeast Europe, and the extent to which they involve change in genetic ancestry is not fully understood due to the lack of relevant ancient DNA data. Here we present the results from new low-coverage whole-genome shotgun sequence data from five hunter-gatherers and five first farmers of Estonia whose remains date to 4,500 to 6,300 years before present. We find evidence of significant differences between the two groups in the composition of autosomal as well as mtDNA, X chromosome, and Y chromosome ancestries. We find that Estonian hunter-gatherers of Comb Ceramic culture are closest to Eastern hunter-gatherers, which is in contrast to earlier hunter-gatherers from the Baltics, who are close to Western hunter-gatherers [8, 9]. The Estonian first farmers of Corded Ware culture show high similarity in their autosomes with European hunter-gatherers, Steppe Eneolithic and Bronze Age populations, and European Late Neolithic/Bronze Age populations, while their X chromosomes are in addition equally closely related to European and Anatolian and Levantine early farmers. These findings suggest that the shift to intensive cultivation and animal husbandry in Estonia was triggered by the arrival of new people with predominantly Steppe ancestry but whose ancestors had undergone sex-specific admixture with early farmers with Anatolian ancestry.


Assuntos
Agricultura/história , DNA Antigo/análise , Genoma Humano/genética , Migração Humana , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , DNA Mitocondrial/química , Estônia , História Antiga , Humanos
4.
Nature ; 522(7555): 167-72, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26062507

RESUMO

The Bronze Age of Eurasia (around 3000-1000 BC) was a period of major cultural changes. However, there is debate about whether these changes resulted from the circulation of ideas or from human migrations, potentially also facilitating the spread of languages and certain phenotypic traits. We investigated this by using new, improved methods to sequence low-coverage genomes from 101 ancient humans from across Eurasia. We show that the Bronze Age was a highly dynamic period involving large-scale population migrations and replacements, responsible for shaping major parts of present-day demographic structure in both Europe and Asia. Our findings are consistent with the hypothesized spread of Indo-European languages during the Early Bronze Age. We also demonstrate that light skin pigmentation in Europeans was already present at high frequency in the Bronze Age, but not lactose tolerance, indicating a more recent onset of positive selection on lactose tolerance than previously thought.


Assuntos
Povo Asiático/genética , Evolução Cultural/história , Fósseis , Genoma Humano/genética , Genômica , Idioma/história , População Branca/genética , Arqueologia/métodos , Ásia/etnologia , DNA/genética , DNA/isolamento & purificação , Europa (Continente)/etnologia , Frequência do Gene/genética , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Intolerância à Lactose/genética , Polimorfismo de Nucleotídeo Único/genética , Pigmentação da Pele/genética
5.
Nature ; 506(7487): 225-9, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24522598

RESUMO

Clovis, with its distinctive biface, blade and osseous technologies, is the oldest widespread archaeological complex defined in North America, dating from 11,100 to 10,700 (14)C years before present (bp) (13,000 to 12,600 calendar years bp). Nearly 50 years of archaeological research point to the Clovis complex as having developed south of the North American ice sheets from an ancestral technology. However, both the origins and the genetic legacy of the people who manufactured Clovis tools remain under debate. It is generally believed that these people ultimately derived from Asia and were directly related to contemporary Native Americans. An alternative, Solutrean, hypothesis posits that the Clovis predecessors emigrated from southwestern Europe during the Last Glacial Maximum. Here we report the genome sequence of a male infant (Anzick-1) recovered from the Anzick burial site in western Montana. The human bones date to 10,705 ± 35 (14)C years bp (approximately 12,707-12,556 calendar years bp) and were directly associated with Clovis tools. We sequenced the genome to an average depth of 14.4× and show that the gene flow from the Siberian Upper Palaeolithic Mal'ta population into Native American ancestors is also shared by the Anzick-1 individual and thus happened before 12,600 years bp. We also show that the Anzick-1 individual is more closely related to all indigenous American populations than to any other group. Our data are compatible with the hypothesis that Anzick-1 belonged to a population directly ancestral to many contemporary Native Americans. Finally, we find evidence of a deep divergence in Native American populations that predates the Anzick-1 individual.


Assuntos
Genoma Humano/genética , Indígenas Norte-Americanos/genética , Filogenia , Arqueologia , Ásia/etnologia , Osso e Ossos , Sepultamento , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração/história , Europa (Continente)/etnologia , Fluxo Gênico/genética , Haplótipos/genética , História Antiga , Humanos , Lactente , Masculino , Modelos Genéticos , Dados de Sequência Molecular , Montana , Dinâmica Populacional , Datação Radiométrica
6.
Proc Natl Acad Sci U S A ; 110(16): 6465-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23576724

RESUMO

There is a consensus that modern humans arrived in the Americas 15,000-20,000 y ago during the Late Pleistocene, most probably from northeast Asia through Beringia. However, there is still debate about the time of entry and number of migratory waves, including apparent inconsistencies between genetic and morphological data on Paleoamericans. Here we report the identification of mitochondrial sequences belonging to haplogroups characteristic of Polynesians in DNA extracted from ancient skulls of the now extinct Botocudo Indians from Brazil. The identification of these two Polynesian haplogroups was confirmed in independent replications in Brazil and Denmark, ensuring reliability of the data. Parallel analysis of 12 other Botocudo individuals yielded only the well-known Amerindian mtDNA haplogroup C1. Potential scenarios to try to help understand these results are presented and discussed. The findings of this study may be relevant for the understanding of the pre-Columbian and/or post-Columbian peopling of the Americas.


Assuntos
DNA Mitocondrial/genética , Haplótipos/genética , Migração Humana/história , Indígenas Sul-Americanos/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Filogenia , Sequência de Bases , Brasil , História Antiga , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
7.
Nature ; 479(7373): 359-64, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22048313

RESUMO

Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary period remain contentious. Here we use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, emphasizing the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.


Assuntos
Biota , Mudança Climática/história , Extinção Biológica , Atividades Humanas/história , Mamíferos/fisiologia , Animais , Teorema de Bayes , Bison , DNA Mitocondrial/análise , DNA Mitocondrial/genética , Europa (Continente) , Fósseis , Variação Genética , Geografia , História Antiga , Cavalos , Humanos , Mamíferos/genética , Mamutes , Dados de Sequência Molecular , Dinâmica Populacional , Rena , Sibéria , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA